Modular Representations of the Ortho-symplectic Supergroups

نویسندگان

  • BIN SHU
  • WEIQIANG WANG
چکیده

A Chevalley type integral basis for the ortho-symplectic Lie superalgebra is constructed. The simple modules of the ortho-symplectic supergroup over an algebraically closed field of prime characteristic not equal to 2 are classified, where a key combinatorial ingredient comes from the Mullineux conjecture on modular representations of the symmetric group. A Steinberg type tensor product theorem for the ortho-symplectic supergroup is also obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some bounds on unitary duals of classical groups‎ - ‎non-archimeden case

‎We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups‎. ‎Roughly‎, ‎they can show up only if the‎ ‎central character of the inducing irreducible cuspidal representation is dominated by the‎ ‎square root of the modular character of the minimal parabolic subgroup‎. ‎For unitarizable subquotients...

متن کامل

Branching Rules for Modular Fundamental Representations of Symplectic Groups

In this paper branching rules for the fundamental representations of the symplectic groups in positive characteristic are found. The submodule structure of the restrictions of the fundamental modules for the group Sp2n(K) to the naturally embedded subgroup Sp2n−2(K) is determined. As a corollary, inductive systems of fundamental representations for Sp∞(K) are classified. The submodule structure...

متن کامل

The quantum dilogarithm and unitary representations of cluster modular groupoids

2 The symplectic double of a cluster X -variety 9 2.1 Cluster X and A-varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Construction of the symplectic double . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 A decomposition of mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The motivic dilogarithm structure on the sym...

متن کامل

Siegel Modular Forms and Finite Symplectic Groups

The finite symplectic group Sp(2g) over the field of two elements has a natural representation on the vector space of Siegel modular forms of given weight for the principal congruence subgroup of level two. In this paper we decompose this representation, for various (small) values of the genus and the level, into irreducible representations. As a consequence we obtain uniqueness results for cer...

متن کامل

Uniform behavior of families of Galois representations on Siegel modular forms

We prove the following uniformity principle: if one of the Galois representations in the family attached to a genus two Siegel cusp form of level 1, weight k > 3 and with multiplicity one is reducible (for a prime p > 4k − 5) then almost all the representations in the family are reducible. The result will be proved more generally for compatible families of geometric, pure and symplectic four-di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008